Turning Point Prediction of Oscillating Time Series using Local Dynamic Regression Models
نویسندگان
چکیده
In the prediction of oscillating time series, the interest is in the turning points of successive oscillations rather than the samples themselves. For this purpose a scheme has been proposed; the state space reconstruction is limited to the turning points and the local (nearest neighbor) model is modified in order to predict the turning point magnitudes and times. This approach is extended here using a local dynamic regression model on both turning point magnitudes and times. Simulations on oscillating nonlinear systems show that the proposed approach gives better predictions of turning points than the standard local model applied to all the samples of the oscillating time series.
منابع مشابه
Local prediction of turning points of oscillating time series.
For oscillating time series, the prediction is often focused on the turning points. In order to predict the turning point magnitudes and times it is proposed to form the state space reconstruction only from the turning points and modify the local (nearest-neighbor) model accordingly. The model on turning points gives optimal predictions at a lower dimensional state space than the optimal local ...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کامل